Numerical comparisons of two effective methods for mixed complementarity problems
نویسندگان
چکیده
Recently there have two different effective methods proposed by Kanzow et al. in [19] and [21], respectively, which commonly use the Fischer-Burmeister (FB) function to recast the mixed complementarity problem (MCP) as a constrained minimization problem and a nonlinear system of equations, respectively. They all remark that their algorithms may be improved if the FB function is replaced by other NCP functions. Accordingly, in this paper, we employ the generalized Fischer-Burmeister (GFB) where the 2-norm in the FB function is relaxed to a general p-norm (p > 1) for the two methods Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office. The author’s work is partially supported by National Science Council of Taiwan. The author’s work is supported by National Young Natural Science Foundation (No. 10901058) and Guangdong Natural Science Foundation (No. 9251802902000001).
منابع مشابه
Global Optimization Techniques for Mixed Complementarity Problems
We investigate the theoretical and numerical properties of two global optimization techniques for the solution of mixed complementarity problems. More precisely, using a standard semismooth Newton-type method as a basic solver for complementarity problems, we describe how the performance of this method can be improved by incorporating two wellknown global optimization algorithms, namely a tunne...
متن کاملA Full-NT Step Infeasible Interior-Point Algorithm for Mixed Symmetric Cone LCPs
An infeasible interior-point algorithm for mixed symmetric cone linear complementarity problems is proposed. Using the machinery of Euclidean Jordan algebras and Nesterov-Todd search direction, the convergence analysis of the algorithm is shown and proved. Moreover, we obtain a polynomial time complexity bound which matches the currently best known iteration bound for infeasible interior-point ...
متن کاملStrictly feasible equation-based methods for mixed complementarity problems
We introduce a new algorithm for the solution of the mixed complementarity problem (MCP) which has stronger properties than most existing methods. In fact, typical solution methods for the MCP either generate feasible iterates but have to solve relatively complicated subproblems (like quadratic programs or linear complementarity problems), or they have relatively simple subproblems (like linear...
متن کاملHamburger Beitrage zur Angewandten Mathematik Strictly Feasible Equation-Based Methods for Mixed Complementarity Problems
We introduce a new algorithm for the solution of the mixed complementarity problem (MCP) which has stronger properties than most existing methods. In fact, typical solution methods for the MCP either generate feasible iterates but have to solve relatively complicated subproblems (like quadratic programs or linear complementarity problems), or they have relatively simple subproblems (like linear...
متن کاملMixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 234 شماره
صفحات -
تاریخ انتشار 2010